skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kshitij, Abhinav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Edge-assisted AR supports high-quality AR on resource-constrained mobile devices by offloading high-rate camera-captured frames to powerful GPU edge servers to perform heavy vision tasks. Since the result of an offloaded frame may not come back in the same frame interval, edge-assisted AR designs resort to local tracking on the last server returned result to generate more accurate result for the current frame. In such an offloading+local tracking paradigm, reducing the staleness of the last server returned result is critical to improving AR task accuracy. In this paper, we present MPCP, an online offloading scheduling framework that minimizes the staleness of server-returned result in edge-assisted AR by optimally pipelining network transfer of frames to the edge server and the Deep Neural Network inference on the edge server. MPCP is based on model predictive control (MPC). Our evaluation results show that MPCP reduces the depth estimation error by up to 10.0% compared to several baseline schemes. 
    more » « less